The spin-dependent quark beam function at NNLO

Ulrich Schubert Argonne National Laboratory

In collaboration with R. Boughezal, F. Petriello and H. Xing arXiv:1704.05457

Proton Spin Puzzle

Proton spin sum rule

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

$$\Delta\Sigma = \sum_{i} \int_{0}^{1} dx \, \Delta f_{q_i}(x) \qquad \Delta G = \int_{0}^{1} dx \, \Delta f_g(x)$$

Contribution from quarks much smaller then expected

$$\Delta \Sigma \approx 0.25$$

Helicity parton distributions are probed by

Current Status

Current data is **not** well described

- We need more data and more accurate theoretical predictions
 - => Extent techniques from unpolarized collision

N-Jettiness [Boughezal, Focke, Liu, Petriello; Gaunt Stahlhofen Tackmann, Walsh]

virtual real virtual real-real

N-Jettiness

[Boughezal, Focke, Liu, Petriello; Gaunt Stahlhofen Tackmann, Walsh]

N-Jettiness

[Boughezal, Focke, Liu, Petriello; Gaunt Stahlhofen Tackmann, Walsh]

=> Use factorisation theorem derived from SCET

=> NLO N+1 jet calculation

$$\frac{d\sigma}{d\mathcal{T}_N} = H \otimes B \otimes S \otimes \left[\prod_n^N J_n\right] + \text{Power corrections} \\ \text{[Stewart, Tackmann, Waalewijn]}$$

Hard function (H): virtual corrections, process dependent

Soft function (S): describes soft radiation

Jet function (J): describes radiation collinear to final state jets

Beam function (B): describes collinear initial state radiation

Polarized Collisions

- Above cut piece can simply be polarised
- Similar factorization theorem for the below cut piece

$$\frac{d\sigma_{LL}}{d\mathcal{T}_N} = \Delta H \otimes \Delta B \otimes S \otimes \left[\prod_{n=1}^N J_n\right] + \cdots$$

Soft function: unchanged from unpolarized version [Boughezal, Liu, Petriello]

Jet function: unchanged from unpolarized version [Becher, Neubert; Becher, Bell]

Hard function: known for DIS and DY

$$\Delta H = H^+ - H^-$$

Beam function: previously unknown, discussed here

$$\Delta B = B^+ - B^-$$

[Stewart, Tackmann, Waalewijn]

Beam function

$$\Delta B_i(t, x, \mu) = \sum_{j} \int_{x}^{1} \frac{d\xi}{\xi} \Delta \mathcal{I}_{ij} \left(t, \frac{x}{\xi} \right) \Delta f_j(\xi, \mu)$$

- Parton j with momentum distribution determined by PDF emits collinear radiation, which builds up jet described by \mathcal{I}_{ij}
- These emissions might change the parton i entering the hard scattering (type, momentum fraction)
- \mathcal{I}_{ij} can be calculated perturbatively

Generate squared amplitude

Generate squared amplitude

$$\Delta B_{ij}^{\mathrm{bare}}(t,z) =$$

Reverse Unitarity

[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

Integration-by-parts(IBP)

[Chetyrkin, Tkachov]

$$\Delta B_{ij}^{\text{bare}}(t,z) = \sum_{i=1}^{n} c_i(t,z) I_i(t,z)$$

Generate squared amplitude

$$\Delta B_{ij}^{\mathrm{bare}}(t,z) =$$

Reverse Unitarity

[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

Integration-by-parts(IBP) [Chetyrkin, Tkachov]

$$\Delta B_{ij}^{\text{bare}}(t,z) = \sum_{i=1}^{n} c_i(t,z) I_i(t,z)$$

Differential Equations(DEQ) [Kotikov;Gehrmann,Remiddi]

Generate squared amplitude

$$\Delta B_{ij}^{\mathrm{bare}}(t,z) = \int_{000000}^{000000}$$

Reverse Unitarity

[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

Integration-by-parts(IBP) [Chetyrkin, Tkachov]

$$\Delta B_{ij}^{\text{bare}}(t,z) = \sum_{i=1}^{n} c_i(t,z) I_i(t,z)$$

- Differential Equations(DEQ) [Kotikov;Gehrmann,Remiddi]
- **UV** renormalization

$$\Delta B_{ij}^{bare}(t,z) = \int dt' Z_i(t-t',\mu) \Delta B_{ij}(t',z,\mu) ,$$

Generate squared amplitude

Reverse Unitarity

[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

Integration-by-parts(IBP)
 [Chetyrkin,Tkachov]

$$\Delta B_{ij}^{\text{bare}}(t,z) = \sum_{i=1}^{n} c_i(t,z) I_i(t,z)$$

- Differential Equations(DEQ)
 [Kotikov;Gehrmann,Remiddi]
- UV renormalization

$$\Delta B_{ij}^{bare}(t,z) = \int dt' Z_i(t-t',\mu) \Delta B_{ij}(t',z,\mu),$$

Matching on PDF

$$\Delta B_{ij}(t,z,\mu) = \sum_{k} \Delta \mathcal{I}_{ik}(t,z,\mu) \otimes \Delta f_{kj}(z)$$

Generate squared amplitude

Reverse Unitarity

[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

Integration-by-parts(IBP)
 [Chetyrkin,Tkachov]

$$\Delta B_{ij}^{\text{bare}}(t,z) = \sum_{i=1}^{n} c_i(t,z) I_i(t,z)$$

- Differential Equations(DEQ)
 [Kotikov;Gehrmann,Remiddi]
- UV renormalization

$$\Delta B_{ij}^{bare}(t,z) = \int dt' Z_i(t-t',\mu) \Delta B_{ij}(t',z,\mu),$$

Matching on PDF

$$\Delta B_{ij}(t, z, \mu) = \sum_{k} \Delta \mathcal{I}_{ik}(t, z, \mu) \otimes \Delta f_{kj}(z)$$

• Additional renormalization for γ_5

$$\Delta B = \left(\Delta \tilde{\mathcal{I}} \otimes \bar{Z}^5\right) \otimes \left(Z^5 \otimes \Delta \tilde{f}\right)$$

Master Integrals

- Initially $\mathcal{O}(100) \mathcal{O}(1000)$ integrals
- 9 MIs in real-real channel

3 MIs in real-virtual channel

Generate DEQ

$$\partial_x \vec{f} = A_x \vec{f}, \qquad x = t, z$$

Calculation of Master Integrals

 Bring DEQ in canonical form with Magnus algorithm [Henn; Argeri, Di Vita, Mastrolia, Mirabella, Schlenk, Tancredi, U.S.]

$$\partial_x \vec{g} = \epsilon \hat{A}_x \vec{g} \qquad \hat{A}_z = \frac{\hat{A}_1}{z} + \frac{\hat{A}_2}{1+z} + \frac{\hat{A}_3}{1-z}$$

- Matrices A_i have only numeric entries
- Simple alphabet $\{1-z, z, 1+z\}$
- Solution can be written in terms of Harmonic Polylogarithms

$$H_{a_1,...,a_n}(z) = \int_0^z dt \frac{H_{a_2,...a_n}(t)}{t - a_1}, \quad a_i \in [0, -1, 1]$$

$$H_{0,...,0}(z) = \frac{1}{n!} \log^n(z)$$

Calculation of Master Integrals

- MI for RR channel behave like $(1-z)^{-2\epsilon}F(z)$ when $z\to 1$ [Gaunt, Stahlhofen, Tackmann]
 - => fixes 7 out of 9 boundary constants
- One MI is easily obtained by direct integration
- Last boundary constant obtained by
 - Introduce extra scale
 - Solve DEQ with extra scale
 - Here all boundaries can be fixed easily
 - take scale carefully to zero
- MI for RV behave like $(1-z)^{-2\epsilon,-\epsilon}F(z)$ when $z\to 1$ => fixes one boundary constant
- Taking carefully $z \to 0$ fixes second boundary constant
- Last boundary can be easily obtained by direct integration

UV renormalisation and Matching

Use standard $\overline{\rm MS}$ renormalization

$$\Delta B_{ij}^{bare(2)}(t,z) = \Delta B_{ij}^{(2)}(t,z,\mu) + Z_i^{(2)}(t,\mu)\delta_{ij}\delta(1-z) + \int dt' Z_i^{(1)}(t-t',\mu)\Delta B_{ij}^{(1)}(t',z,\mu).$$

- Requires calculation of $\Delta B_{ij}^{(1)}(t,z,\mu)$ up to $\mathcal{O}(\epsilon^2)$
- Match beam function on PDFs

$$\Delta \tilde{\mathcal{I}}_{ij}^{(2)}(t,z,\mu) = \Delta B_{ij}^{(2)}(t,z,\mu) - 4\delta(t)\Delta \tilde{f}_{ij}^{(2)}(z) - 2\sum_{l}\Delta \tilde{\mathcal{I}}_{ik}^{(1)}(t,z,\mu) \otimes \Delta \tilde{f}_{kj}^{(1)}(z) .$$

$$\Delta \tilde{f}_{ij}^{(1)}(z) = -\frac{1}{\epsilon}\Delta \tilde{P}_{ij}^{(0)}(z),$$

$$\Delta \tilde{f}_{ij}^{(2)}(z) = \frac{1}{2\epsilon^2}\sum_{l}\Delta \tilde{P}_{ik}^{(0)}(z) \otimes \Delta \tilde{P}_{kj}^{(0)}(z) + \frac{\beta_0}{4\epsilon^2}\Delta \tilde{P}_{ij}^{(0)}(z) - \frac{1}{2\epsilon}\Delta \tilde{P}_{ij}^{(1)}(z),$$

Cancellation of poles provides consistency check

Treatment of Gamma5

We use HVBM scheme

$$\gamma_5 \equiv \frac{i}{4!} \epsilon^{\mu\nu\rho\sigma} \gamma_\mu \gamma_\nu \gamma_\sigma \gamma_\rho \qquad \qquad \{\gamma_5, \tilde{\gamma}_\mu\} = 0, \quad [\gamma_5, \hat{\gamma}_\mu] = 0.$$

- Result of Dirac traces depends on d- and 4-d-dimensional momenta
- Map 4-d momenta to auxiliary vectors

$$I^{d}[\hat{k}_{1} \cdot \hat{k}_{2}] = -\frac{2\epsilon}{v_{\perp}^{2}} I^{d}[(k_{1} \cdot v_{\perp})(k_{2} \cdot v_{\perp}))],$$

- But: HVBM breaks helicity conservation
 - => Must be restored with additional \mathbb{Z}^5 renormalization

$$\Delta B = \left(\Delta \tilde{\mathcal{I}} \otimes \bar{Z}^5\right) \otimes \left(Z^5 \otimes \tilde{f}\right)$$

• Z^5 can be obtained by demanding helicity conservation

$$\Delta \mathcal{I}_{qq}^{(2,V)} = \mathcal{I}_{qq}^{(2,V)}$$
 $\Delta \mathcal{I}_{q\bar{q}}^{(2,V)} = -\mathcal{I}_{q\bar{q}}^{(2,V)}$

Consistency checks

 HVBM scheme implemented in public code Tracer and in-house Form routine

[Jamin,Lautenbacher]

- MIs calculated by DEQ and direct integration
- Cancellation of poles during renormalization and matching
 - Confirmed polarised LO and NLO splitting functions [Vogelsang]
 - Confirmed UV renormalisation constant [Stewart, Tackmann, Waalewijn; Ritzmann, Waalewijn]
- Confirmed unpolarised quark beam function calculation at NLO and NNLO

[Stewart, Tackmann, Waalewijn; Gaunt, Stahlhofen, Tackmann]

• Z^5 consistent with Literature [Ravindran, Smith, van Neerven]

Conclusions & Outlook

- Calculated spin-dependent quark beam function
- Last missing ingredient to apply N-jettiness subtraction to many polarized processes
- Provided independent check on:
 - unpolarized quark beam function up to NNLO
 - polarised splitting function up to NLO

Ready for phenomenological studies

Conclusions & Outlook

- Calculated spin-dependent quark beam function
- Last missing ingredient to apply N-jettiness subtraction to many polarized processes
- Provided independent check on:
 - unpolarized quark beam function up to NNLO
 - polarised splitting function up to NLO

Ready for phenomenological studies

Thank you for your attention